Fine-tune GPT-2 using code.
Link to use coding chatbot AY-72 https://www.blackbox.ai/agent/AYSeventy-two24BBMKY
Can you show me (with code) how to fine-tune GPT
Sure! Here's a basic example of how you can fine-tune the GPT-2 model using the Hugging Face Transformers library. This example assumes that you have already downloaded the pre-trained GPT-2 model and have a fine-tuning dataset ready.
First, you'll need to install the Transformers library if you haven't already. You can do this with pip:
Edit
Full Screen
Copy code
pip install transformers
Next, let's import the necessary modules:
python
Edit
Full Screen
Copy code
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW
import torch
from torch.utils.data import Dataset, DataLoader
Now, let's define our custom dataset class, which will load our fine-tuning data:
python
Edit
Full Screen
Copy code
class FineTuningDataset(Dataset):
def __init__(self, encodings, labels=None):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
if self.labels:
item["labels"] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.encodings.input_ids)
Now, let's load the pre-trained GPT-2 model and tokenizer:
python
Edit
Full Screen
Copy code
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
Next, let's tokenize our fine-tuning dataset and create our DataLoader:
python
Edit
Full Screen
Copy code
encoded_dataset = tokenizer(dataset, padding=True, truncation=True, max_length=512)
fine_tuning_dataset = FineTuningDataset(encoded_dataset)
dataloader = DataLoader(fine_tuning_dataset, batch_size=8, shuffle=True)
Now, let's define our training function:
python
Edit
Full Screen
Copy code
def train(model, dataloader, optimizer, device, scheduler, max_length=512):
model.train()
total_loss = 0
for batch in dataloader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device) if 'labels' in batch else None
optimizer.zero_grad()
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
total_loss += loss.item()
loss.backward()
optimizer.step()
scheduler.step()
avg_loss = total_loss / len(dataloader)
return avg_loss
Finally, let's train the model for a few epochs:
python
Edit
Full Screen
Copy code
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
optimizer = AdamW(model.parameters(), lr=1e-5)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=10000)
num_epochs = 3
for epoch in range(num_epochs):
print(f"Epoch {epoch + 1}/{num_epochs}")
avg_loss = train(model, dataloader, optimizer, device, scheduler)
print(f"Average loss: {avg_loss:.4f}")
This is just a basic example to get you started. You may need to modify this code to fit your specific use case. For example, you might want to use a different batch size, learning rate, or number of epochs. You might also want to use a different tokenizer or model architecture. But hopefully, this gives you a good starting point for fine-tuning GPT-2!
Generated using AY-72 Personal Assistant
https://www.blackbox.ai/agent/AYSeventy-two24BBMKY
Comments
Post a Comment